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Abstract

In these notes we consider a slightly generalized Fedosov star product∗ on a symplectic man-
ifold (M, ω), emanating from the fibrewise Weyl product◦ and the triple(∇, Ω, s) consisting
of a symplectic torsion free connection∇ on M, a formal seriesΩ ∈ νZ2

dR(M)[[ν]] of closed
two-forms onM, and a certain formal seriess of symmetric contravariant tensor fields onM. We
prove necessary and sufficient conditions for certain classical symmetries to become symmetries
of the star product, only sufficient conditions having been published in special cases when this
letter was written (note, however, the different proofs in [S. Gutt, J. Rawnsley, Natural star prod-
ucts on symplectic manifolds and quantum moment maps, 2003. math.SG/0304498 v1]). For a
given symplectic vector fieldX on M, it is well known thatLXΩ = [LX, ∇] (=LXs) = 0 is a
sufficient condition for the Lie derivativeLX to be a derivation of∗. We prove that these con-
ditions are in fact necessary ones, also providing a very simple proof for their being sufficient.
Moreover, we prove a criterion that has first been presented by Gutt [S. Gutt, Star products and
group actions, Contribution to the Bayrischzell Workshop, April 26–29, 2002] (see also [S. Gutt,
J. Rawnsley, Natural star products on symplectic manifolds and quantum moment maps, 2003.
math.SG/0304498 v1] for a different proof) and which specifies a necessary and sufficient condi-
tion forLX to be a quasi-inner derivation. The statement that this condition is a sufficient one dates
back to Kravchenko [O. Kravchenko, Compos. Math. 123 (2000) 131]. Applying our results, we
find necessary and sufficient criteria for a Fedosov star product to beg-invariant and to admit a
quantum Hamiltonian. Finally, supposing the existence of a quantum Hamiltonian, we present a
cohomological condition onΩ that is equivalent to the existence of a quantum momentum mapping.
In particular, our results show that the existence of a classical momentum mapping in general does
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not imply the existence of a quantum momentum mapping and thus give a negative answer to Xu’s
question posed in [P. Xu, Commun. Math. Phys. 197 (1998) 167].
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Already very early in the development of deformation quantization (star products) as
introduced in[2] by Bayen et al., various notions of invariance of star products with respect to
Lie group and Lie algebra actions were introduced and discussed by Arnal et al.[1]. General
invariant star products on symplectic manifolds have been classified up to equivalence by
Bertelson et al.[3], and even stronger classification results have meanwhile been obtained
for star products of Wick type on Kähler manifolds by the authors[14].

An important structure in deformation quantization, which naturally generalizes the mo-
mentum mapping in Hamiltonian mechanics, is that of a quantum momentum mapping for
g-invariant star products as defined and studied in detail by Xu[18]. This notion has proved
to be essential for the formulation of the analogue of the Marsden–Weinstein reduction in
deformation quantization as it was studied in[9] as well as for the example of reduction of
star products forCPn [5,17] and the application of the BRST quantization in deformation
quantization[6].

In [18], Xu raised the question whether the existence of a classical momentum mapping
guarantees the existence of a quantum momentum mapping in his sense. Recently, the
question of existence of a quantum momentum mapping for the usual Fedosov star products
has been taken up by Hamachi[12], who has given a condition for its existence in terms of
parts of the Fedosov derivation used to define the star products assumed to be invariant with
respect to a symplectic Lie Group action onM. A systematic treatment of these questions
in the case of actions of a Lie group was also presented by Gutt[10].

In the present paper, we generalize these results in two aspects. First, we drop the as-
sumption of invariance of the (generalized) Fedosov star products with respect to a Lie
group action and replace it by the somewhat weaker invariance with respect to the ac-
tion of a Lie algebrag. Secondly, we make the conditions given in[12] more precise and
we show that, given the existence of a classical momentum mapping, the existence of a
quantum momentum mapping relies on two cohomological conditions on the formal series
Ω ∈ νZ2

dR(M)[[ν]] used to construct theg-invariant star product.
The paper is organized as follows. InSection 2, we collect some notations and give a very

short review of Fedosov’s construction, and we prove some technical details enabling us to
describe explicitly all derivations of Fedosov star products∗. In Section 3, we consider an
arbitrary symplectic vector fieldX on M and we give necessary and sufficient conditions
for X to be (via the Lie derivative) a derivation of∗. Furthermore, we specify additional
conditions guaranteeing that this derivation is even quasi-inner. InSection 4, we recall
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some definitions from[18] and we apply our results fromSection 3to give criteria for the
invariance of∗ with respect to some Lie algebrag. Finally, assuming theg-action to be
Hamiltonian and the Hamiltonian to be equivariant with respect to the coadjoint action of
g, we find necessary and sufficient conditions for the existence of a quantum momentum
mapping.

2. Preliminaries

In this section we shall briefly recall the essentials of Fedosov’s construction of star
products on a symplectic manifold(M, ω). As we assume the reader to be familiar with
this construction we shall restrict to the very minimum to introduce our notation. (For
more details we refer the reader to[7,8] and[15, Section 2], where we even used the same
notation.) Defining

W⊗ Λ := (
X∞

s=0Γ ∞ (∨s
T ∗M ⊗∧

T ∗M
))

[[ν]] , (1)

it is obvious thatW⊗Λ becomes in a natural way an associative, super-commutative algebra
and the product is denoted byµ(a ⊗ b) = ab for a, b ∈ W⊗ Λ. (ByW⊗ Λk we denote
the elements of anti-symmetric degreek and setW := W ⊗ Λ0.) Besides this pointwise
product the Poisson tensorΛ corresponding toω gives rise to another associative product
◦ onW⊗ Λ by

a ◦ b = µ ◦ exp( 1
2νΛij is(∂i) ⊗ is(∂j))(a ⊗ b), (2)

which is a deformation ofµ. Hereis(Y) denotes the symmetric insertion of a vector fieldY ∈
Γ ∞(TM) and similarlyia(Y) shall be used to denote the anti-symmetric insertion of a vector
field. We set ad(a)b := [a, b] where the latter denotes the dega-graded super-commutator
with respect to◦. Denoting the obvious degree-maps by degs, dega and degν = ν∂ν one
observes that they all are derivations with respect toµ but degs and degν fail to be derivations
with respect to◦. Instead Deg := degs + 2 degν is a derivation of◦ and hence(W⊗ Λ, ◦)

is formally Deg-graded and the corresponding degree is referred to as the total degree.
Sometimes we writeWk ⊗ Λ to denote the elements of total degree≥k.

In local coordinates we define the differentialδ := (1 ⊗ dxi)is(∂i) which satisfiesδ2 =
0 and is a super-derivation of◦. Moreover, there is a homotopy operatorδ−1 satisfying
δδ−1 + δ−1δ + σ = id whereσ : W ⊗ Λ → C∞(M)[[ν]] denotes the projection onto the
part of symmetric and anti-symmetric degree 0 andδ−1a := (1/(k + l))(dxi ⊗1)ia(∂i)a for
degsa = ka, degaa = la with k + l �= 0 andδ−1a := 0 else. From a torsion free symplectic
connection∇ onM we obtain a derivation∇ := (1⊗dxi)∇∂i of ◦ that satisfies the following
identities: [δ, ∇] = 0, ∇2 = −(1/ν) ad(R), whereR := (1/4)ωitR

t
jkl dxi∨dxj⊗dxk∧dxl ∈

W⊗ Λ2 involves the curvature of the connection. Moreover we haveδR = 0 = ∇R by the
Bianchi identities.

Now remember the following facts which are just restatements of Fedosov’s original
theorems in[7, Theorems 3.2 and 3.3]resp.[8, Theorem 5.3.3].
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For all Ω ∈ νZ2
dR(M)[[ν]] and all s ∈ W3 with σ(s) = 0 there exists a unique element

r ∈W2 ⊗ Λ1 such that

δr = ∇r − 1

ν
r ◦ r + R + 1 ⊗ Ω and δ−1r = s. (3)

Moreoverr satisfies the formula

r = δs + δ−1
(

∇r − 1

ν
r ◦ r + R + 1 ⊗ Ω

)
(4)

from whichr can be determined recursively. In this case the Fedosov derivation

D := −δ + ∇ − 1

ν
ad(r) (5)

is a super-derivation of anti-symmetric degree 1 and has square zero:D2 = 0. Furthermore
observe that theD-cohomology on elementsa with positive anti-symmetric degree is trivial
since one has the following homotopy formulaDD−1a + D−1Da = a, whereD−1a :=
−δ−1(id − [δ−1, ∇ − (1/ν) ad(r)])−1a (cf. [8, Theorem 5.2.5]).

Then for anyf ∈ C∞(M)[[ν]] there exists a unique elementτ(f) ∈ ker(D) ∩W such
thatσ(τ(f)) = f andτ : C∞(M)[[ν]] → ker(D)∩W is C[[ν]]-linear andτ is referred to as
the Fedosov–Taylor series corresponding toD. In additionτ(f) can be obtained recursively
for f ∈ C∞(M) from

τ(f) = f + δ−1
(

∇τ(f) − 1

ν
ad(r)τ(f)

)
. (6)

UsingD−1 one can also writeτ(f) = f − D−1(1 ⊗ df). SinceD as constructed above
is a◦-super-derivation ker(D) ∩W is a◦-sub-algebra and a new associative product∗ for
C∞(M)[[ν]], which turns out to be a star product, is defined by pull-back of◦ via τ.

Observe that in(3)we allowed for an arbitrary elements ∈Wwith σ(s) = 0 that contains
no terms of total degree lower than 3 as normalization condition forr, i.e.δ−1r = s instead
of the usual equationδ−1r = 0. In the following we shall refer to the associative product∗
defined above as the Fedosov star product (corresponding to(∇, Ω, s)).

Now we shall give a very convenient description of all derivations of the star product∗ that
will prove very useful for our further considerations. To this end we consider appropriate
fibrewise quasi-inner derivations of the shape

Dh = −1

ν
ad(h), (7)

whereh ∈ W and without loss of generality we assumeσ(h) = 0. Our aim is to define
C[[ν]]-linear derivations of∗ byC∞(M)[[ν]] � f �→ σ(Dhτ(f)) but for an arbitrary element
h ∈W with σ(h) = 0 this mapping fails to be a derivation as Dh does not map elements of
ker(D) ∩W to elements of ker(D) ∩W. In order to achieve this one must have thatD and
Dh super-commute. AsD is aC[[ν]]-linear ◦-super-derivation we obviously have

[D, Dh] = −1

ν
ad(Dh)
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and hence obviouslyDh must be central, i.e.Dh has to be of the shape 1⊗ A with A ∈
Γ ∞(T ∗M)[[ν]] to have [D, Dh] = 0. FromD2 = 0 we get that the necessary condition for
the solvability of the equationDh = 1⊗A is the closedness ofA sinceD(1⊗A) = 1⊗dA.
But as theD-cohomology is trivial on elements with positive anti-symmetric degree this
condition is also sufficient for the solvability of the equationDh = 1 ⊗ A and we get the
following statement.

Lemma 2.1.

(i) For all formal seriesA ∈ Γ ∞(T ∗M)[[ν]] of closed one-forms on M there is a uniquely
determined elementhA ∈W such thatDhA = 1 ⊗ A andσ(hA) = 0. MoreoverhA is
explicitly given by

hA = D−1(1 ⊗ A). (8)

(ii) For all A ∈ Z1
dR(M)[[ν]] the mappingDA : C∞(M)[[ν]] → C∞(M)[[ν]], where

DAf := σ(DhA
τ(f)) = σ

(
−1

ν
ad(hA)τ(f)

)
∀ f ∈ C∞(M)[[ν]] (9)

defines aC[[ν]]- linear derivation of∗ and hence this construction yields a mapping
Z1

dR(M)[[ν]] � A �→ DA ∈ DerC[[ν]] (C
∞(M)[[ν]] , ∗).

Proof. The fact thathA = D−1(1 ⊗ A) satisfiesDhA = 1 ⊗ A is obvious from the
homotopy formula forD and the closedness ofA. In addition we haveσ(hA) = 0 since
D−1 raises the symmetric degree at least by 1. For the uniqueness ofhA let h̃A be another
solution of the equations above, then we obviously haveD(hA − h̃A) = 0 and hence
hA − h̃A = τ(ϕ) for someϕ ∈ C∞(M)[[ν]]. Applying σ to this equation one getsϕ = 0,
sinceσ(hA) = σ(h̃A) = 0 andσ(τ(ϕ)) = ϕ, and hencehA = h̃A proving thathA is uniquely
determined by the above equations. For the proof of (ii) we just observe that the equation
[D, DhA

] = 0 which is fulfilled according to (i) implies that DhA
τ(f) = τ(DAf) for all

f ∈ C∞(M)[[ν]]. Using this equation and the obvious fact that DhA
is a derivation of◦ it is

straightforward to see using the very definition of∗ thatDA as defined above is a derivation
of ∗. TheC[[ν]]-linearity of DA is also evident from theC[[ν]]-linearity of τ. �

Furthermore we are now in the position to show that one even obtains allC[[ν]]-linear
derivations of∗ by varyingA in the derivationsDA constructed above.

Proposition 2.2. The mapping

Z1
dR(M)[[ν]] � A �→ DA ∈ DerC[[ν]] (C

∞(M)[[ν]] , ∗)

defined inLemma 2.1is a bijection. Moreover, we have thatDdf is a quasi-inner derivation
for all f ∈ C∞(M)[[ν]], i.e. Ddf = (1/ν) ad∗(f) and the induced mapping[A] �→ [DA]

from H1
dR(M)[[ν]] ∼= Z1

dR(M)[[ν]]/B1
dR(M)[[ν]] to DerC[[ν]] (C

∞(M)[[ν]] , ∗)/Derqi
C[[ν]]

(C∞(M)[[ν]] , ∗) the space ofC[[ν]]- linear derivations of∗ modulo the quasi-inner deriva-
tions, also is bijective.



262 M.F. Müller-Bahns, N. Neumaier / Journal of Geometry and Physics 50 (2004) 257–272

Proof. First we prove the injectivity of the mappingA �→ DA. To this end letDA =
DA′ then we get from DhA

τ(f) = τ(DAf) and from the analogous equation forA′ that
ad(hA −hA′)τ(f) = 0 for all f ∈ C∞(M)[[ν]] and hencehA −hA′ must be central (since it
commutes with all Fedosov–Taylor series), i.e. we havehA − hA′ = gA,A′ ∈ C∞(M)[[ν]].
But with σ(hA) = σ(hA′) = 0 this impliesgA,A′ = 0 and hencehA = hA′ such that
we get 1⊗ A = DhA = DhA′ = 1 ⊗ A′ proving the injectivity. For the surjectivity we
start with an arbitrary derivationD of ∗ and we wish to find closed one-formsAi such that
D = ∑∞

i=0 νiDAi inductively. Assume that we have found such one-forms for 0≤ i ≤ k−1
such thatD′ = D−∑k−1

i=0 νiDAi – which obviously is again a derivation of∗ – is of the shape
D′ = ∑∞

i=k νiD′
i. Thekth order inν of the equationD′(f∗g) = (D′f)∗g+f∗(D′g) for f, g ∈

C∞(M) yields thatD′
k is a vector fieldXk ∈ Γ ∞(TM). Considering the anti-symmetric part

of D′(f ∗ g) = (D′f) ∗ g + f ∗ (D′g) at orderk + 1 of ν we get that this vector field is
symplectic, i.e.LXk

ω = 0 and because of the Cartan formulaAk := −iXk
ω defines a closed

one-form onM. Considering the derivationDAk
it is a straightforward computation using

the explicit construction above to show thatDAk
f = Xk(f) + O(ν) for all f ∈ C∞(M).

But thenD′ − νkDAk
is again a derivation of∗ that starts in orderk + 1 of ν and hence the

surjectivity follows by induction. The fact thatDdf = (1/ν) ad∗(f) for all f ∈ C∞(M)[[ν]]
is obvious from the observation thatτ(f) = f − D−1(1 ⊗ df) and the obvious fact that
ad(f) = 0. From the above, the well-definedness of the mapping [A] �→ [DA] follows and
the bijectivity is a direct consequence of the bijectivity of the mappingA �→ DA. �

Remark 2.3. Actually it is well known that for an arbitrary star product) on a symplectic
manifold the space ofC[[ν]]-linear derivations is in bijection withZ1

dR(M)[[ν]] and that the
quotient space of these derivations modulo the quasi-inner derivations is in bijection with
H1

dR(M)[[ν]] (cf. [4, Theorem 4.2], observe that the proof given above is just an adaption
of the idea of the general proof to our special situation) but the remarkable thing about
Fedosov star products is that these bijections can be explicitly expressed in terms ofD and
D−1 in a very lucid way which will be useful in the following.

To conclude this section we shall remove some redundancy in the description of the
star products∗ by (∇, Ω, s). This will ease the more detailed analysis in the follow-
ing section. To this end we shall recall some well-known facts about symplectic torsion
free connections on(M, ω). Given two such connections say∇ and∇′ it is obvious that
S∇−∇′

(X, Y) := ∇XY − ∇′
XY whereX, Y ∈ Γ ∞(TM) defines a symmetric tensor field

S∇−∇′ ∈ Γ ∞(
∨2

T ∗M ⊗ TM) on M. Definingσ∇−∇′
(X, Y, Z) := ω(S∇−∇′

(X, Y), Z) it
is easy to see thatσ∇−∇′ ∈ Γ ∞(

∨3
T ∗M) is a totally symmetric tensor field. Vice versa

given an arbitrary elementσ ∈ Γ ∞(
∨3

T ∗M) and a symplectic torsion free connection∇
and definingSσ ∈ Γ ∞(

∨2
T ∗M ⊗ TM) by σ(X, Y, Z) = ω(Sσ(X, Y), Z) then∇σ defined

by ∇σ
XY := ∇XY − Sσ(X, Y) again is a symplectic torsion free connection and all such

connections can be obtained this way by varyingσ. Using these relations we shall compare
the corresponding mappings∇ and∇′ onW⊗ Λ in the following lemma.

Lemma 2.4. With the notations from above we have

∇ − ∇′ = −(dxj ⊗ dxi)is(S
∇−∇′

(∂i, ∂j)) = 1

ν
ad(T ∇−∇′

), (10)
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where the tensor fieldT ∇−∇′ ∈ Γ ∞(
∨2

T ∗M ⊗ T ∗M) ⊆ W ⊗ Λ1 is defined byT ∇−∇′

(Z, Y; X) := σ∇−∇′
(X, Y, Z) = ω(S∇−∇′

(X, Y), Z). Moreover T ∇−∇′
satisfies the

equations

∇T ∇−∇′ = R′ − R + 1

ν
T ∇−∇′ ◦ T ∇−∇′

,

δT ∇−∇′ = 0 and

∇′T ∇−∇′ = R′ − R − 1

ν
T ∇−∇′ ◦ T ∇−∇′

,

(11)

whereR = (1/4)ωitR
t
jkl dxi ∨dxj ⊗dxk ∧dxl andR′ = (1/4)ωitR

′t
jkl dxi ∨dxj ⊗dxk ∧dxl

denote the corresponding elements ofW⊗ Λ2 that are built from the curvature tensors of
∇ and∇′.

Proof. The proof of(10) is a straightforward computation using the very definitions from
above. The first identity in(11) directly follows from(10) and [δ, ∇] = [δ, ∇′] = 0. The
other identities in(11)are also easily obtained squaringEq. (10). �

Now we are in the position to compare two Fedosov derivationsD andD′ resp. the
induced star products∗ and∗′ obtained from(∇, Ω, s) and(∇′, Ω′, s′).

Proposition 2.5. The Fedosov derivationsD andD′ coincide if and only ifT ∇−∇′ −r+r′ =
1 ⊗ ϑ whereϑ ∈ νΓ ∞(T ∗M)[[ν]] which is equivalent to

σ∇−∇′ ⊗ 1 − s + s′ = ϑ ⊗ 1 and Ω − Ω′ = dϑ. (12)

Proof. Writing down the definitions ofD andD′ usingEq. (10)the first equivalence is
obvious sinceT ∇−∇′ − r + r′ is central in(W⊗ Λ, ◦) if and only ifD = D′. For the proof
of the second equivalence first assume that we haveT ∇−∇′ − r + r′ = 1 ⊗ ϑ. Applying
δ−1 to this equation and using the normalization condition onr andr′ we obtain the first
equation in(12) sinceδ−1T ∇−∇′ = σ∇−∇′ ⊗ 1. In order to obtain the second equation
in (12) we applyδ to T ∇−∇′ − r + r′ = 1 ⊗ ϑ and a straightforward computation using
the equations forr andr′ together with the identities from(11) yields the stated result. To
prove that the converse is also true assume that the equations in(12)are satisfied and define
B := r − r′ − T ∇−∇′ + 1 ⊗ ϑ ∈ W2 ⊗ Λ1. Then again a straightforward computation
yields thatB satisfiesDB = −(1/ν)B ◦ B andδ−1B = 0 such that the homotopy formula
for δ together withσ(B) = 0 implies thatB is the unique fixed point of the mapping
W2 ⊗ Λ1 � a �→ δ−1(∇a − (1/ν) ad(r)a + (1/ν)a ◦ a) ∈W2 ⊗ Λ1 (cf. [16, Appendix B]
for the application of Banach’s fixed point theorem in this framework). But 0 trivially is
a fixed point of this mapping and hence uniqueness implies thatB = 0 proving the other
direction of the second stated equivalence. �

As an important direct consequence of this proposition we get the following deduction.

Deduction 2.6. For every Fedosov star product∗obtained from(∇, Ω, s) withs ∈W3 there
is a connection∇′, a formal seriesΩ′ of closed two-forms and an elements′ ∈W4 without
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terms of symmetric degree1 such that the star product obtained from(∇′, Ω′, s′) coincides
with∗,and hence we may without loss of generality restrict to such normalization conditions
when varying the connection and the formal series of closed two-forms arbitrarily.

Proof. We writes = s′+σ⊗1−ϑ⊗1 and the preceding proposition states thatD coincides
with D′ (and hence the corresponding star products coincide) whereD′ is obtained from
Ω′ = Ω − dϑ and∇′ = ∇ − (1/ν) ad(δ(σ ⊗ 1)). �

3. Symplectic vector fields as derivations of ∗

Throughout this and the following section let∗ denote the Fedosov star product obtained
from (∇, Ω, s) as inSection 2where in view of Deduction 2.6 we may assume thats ∈W4
contains no part of symmetric degree 1. FurthermoreX ∈ Γ ∞(TM) shall always denote a
symplectic vector field on(M, ω) and the space of all these vector fields shall be denoted
by Γ ∞

symp(TM) := {Y ∈ Γ ∞(TM)|LY ω = 0}. It seems to be folklore and actually is not
very hard to prove that the conditions [LX, ∇] = 0, LXΩ = 0 = LXs are sufficient to
guarantee that the Lie derivative with respect toX is a derivation of∗. Besides providing
a very simple proof of this fact, our aim in this section is to prove that the converse is also
true, i.e. the conditions given above are also necessary to have thatX defines a derivation
of ∗. Moreover, we find an additional cohomological condition involvingω, Ω andX that
is equivalent toLX being even a quasi-inner derivation.

As an important tool we need the deformed Cartan formula (cf.[15, Appendix A]) that
relates the Lie derivative with respect to a symplectic vector fieldX with the Fedosov
derivationD.

Lemma 3.1. For all X ∈ Γ ∞
symp(TM) the Lie derivativeLX can be expressed in the following

manner:

LX = Dia(X) + ia(X)D− 1

ν
ad

(
θX ⊗ 1 + 1

2
DθX ⊗ 1 − ia(X)r

)
, (13)

whereD := dxi ∨ ∇∂i denotes the operator of symmetric covariant derivation and the
closed one-formθX is defined byθX := iXω.

Proof. Since the Lie derivative is a local operator it suffices to prove the above identity
over any contractible open subsetU of M. But asX is symplectic it is locally Hamiltonian,
i.e. overU there is a functionf ∈ C∞(U) such thatX|U = Xf resp. df = θX|U . For
Hamiltonian vector fields the Cartan formula as above was proved in[15, Proposition 5]
and henceEq. (13)is valid for all symplectic vector fieldsX ∈ Γ ∞

symp(TM). �

As an immediate consequence of this lemma we obtain:

Lemma 3.2. For X ∈ Γ ∞
symp(TM) the Lie derivativeLX is a derivation with respect to◦.

In addition we have[δ,LX] = [δ−1,LX] = 0.
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Proof. The first statement of the lemma is obvious fromEq. (13)and the commutation
relations follow from the fact thatLX is compatible with contractions and preserves the
symmetric and the anti-symmetric degree. �

After these rather technical preparations we get the following proposition.

Proposition 3.3. LetX ∈ Γ ∞
symp(TM) thenLX is a derivation of∗ if and only if[LX,D] =

0 which is equivalent to the existence of a formal seriesAX ∈ Z1
dR(M)[[ν]] of closed

one-forms such thatD(θX ⊗ 1 + (1/2)DθX ⊗ 1 − ia(X)r) = 1 ⊗ AX.

Proof. First let us assume that [LX,D] = 0 then the obvious equationLX ◦ σ = σ ◦ LX

implies thatLXτ(f) = τ(LXf) for all f ∈ C∞(M)[[ν]]. But with this equation and the
fact thatLX is a derivation of◦ it is straightforward to prove thatLX is a derivation of∗.
Assuming thatLX is a derivation of∗ Proposition 2.2implies that there is a formal seriesAX

of closed one-forms onM such thatLXf = σ(−(1/ν) ad(D−1(1 ⊗ AX))τ(f)) but on the
other hand the deformed Cartan formula yieldsLXf = σ(−(1/ν) ad(θX ⊗1+ (1/2)DθX ⊗
1− ia(X)r)τ(f)) and henceD−1(1⊗ AX) − (θX ⊗ 1+ (1/2)DθX ⊗ 1− ia(X)r) has to be
central, i.e. a formal function. Observing thatD−1 raises the symmetric degree at least by
1 and thatr contains no part of symmetric degree 0 which is due to the special shape of the
normalization condition this impliesD−1(1⊗ AX) = (θX ⊗ 1+ (1/2)DθX ⊗ 1− ia(X)r).
ApplyingD to this equation and using the homotopy formula forD together with the fact
that AX is closed we getD(θX ⊗ 1 + (1/2)DθX ⊗ 1 − ia(X)r) = 1 ⊗ AX. Assuming
finally that this equation is fulfilled, the deformed Cartan formula together withD2 = 0
obviously implies [LX,D] = 0 since 1⊗ AX is central and hence the proposition is
proved. �

We shall now go on by analysing the condition

D(θX ⊗ 1 + 1
2DθX ⊗ 1 − ia(X)r) = 1 ⊗ AX, where dAX = 0 (14)

in more detail in order to find out whether it gives rise to conditions on(∇, Ω, s) andX.

Lemma 3.4. For all symplectic vector fieldsX ∈ Γ ∞
symp(TM) we have

D(θX ⊗ 1 + 1
2DθX ⊗ 1 − ia(X)r)

= −1 ⊗ θX + ∇( 1
2DθX ⊗ 1) − LXr − ia(X)R − 1 ⊗ iXΩ. (15)

Proof. The proof of this equation is a straightforward computation using the equation that
is solved byr and the deformed Cartan formula(13)once again. �

Next we shall need some detailed formulas that describe [∇,LX] in order to simplify the
result of the above lemma. The proofs of the following two lemmas are just slight variations
of the proofs of[15, Lemmas 3 and 4].
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Lemma 3.5. For all X ∈ Γ ∞
symp(TM) the mapping[∇,LX] enjoys the following properties:

(i) In local coordinates one has

[∇,LX] = (dxj ⊗ dxi)is((LX∇)∂i∂j) = (dxj ⊗ dxi)is(SX(∂i, ∂j)), (16)

where the tensor fieldSX ∈ Γ ∞(T ∗M ⊗ T ∗M ⊗ TM) is defined by

SX(∂i, ∂j) = (LX∇)∂i∂j := LX∇∂i∂j − ∇∂iLX∂j − ∇LX∂i∂j

= R(X, ∂i)∂j + ∇(2)
(∂i,∂j)X. (17)

(ii) SX as defined above is symmetric, i.e.SX ∈ Γ ∞(
∨2

T ∗M ⊗ TM).
(iii) For all U, V, W ∈ Γ ∞(TM) we haveω(W, SX(U, V)) = −ω(SX(U, W), V).

Now SX naturally gives rise to an elementTX ∈ Γ ∞(
∨2

T ∗M ⊗ T ∗M) ofW ⊗ Λ1 of
symmetric degree 2 and anti-symmetric degree 1 by

TX(W, U; V) := ω(W, SX(V, U)) (18)

and we obtain:

Lemma 3.6. The tensor fieldTX as defined in(18)satisfies the following equations:

(i) (1/ν) ad(TX) = [∇,LX];
(ii) TX = ia(X)R − ∇((1/2)DθX ⊗ 1);

(iii) δTX = 0 and∇TX = LXR.

From the preceding lemma we find that the result ofLemma 3.4simplifies to

D(θX ⊗ 1 + 1
2DθX ⊗ 1 − ia(X)r) = −1 ⊗ θX − TX − LXr − 1 ⊗ iXΩ. (19)

Finally we have to find equations that determineLXr in order to analyseEq. (14).

Lemma 3.7. Let X denote a symplectic vector field thenLXr satisfies the equations

δLXr = ∇LXr − 1

ν
ad(r)LXr − 1

ν
ad(TX)r + LXR + 1 ⊗ diXΩ

and δ−1LXr = LXs
(20)

from whichLXr is uniquely determined and can be computed recursively from

LXr = δLXs + δ−1
(

∇LXr − 1

ν
ad(r)LXr − 1

ν
ad(TX)r + LXR + 1 ⊗ diXΩ

)
.

Proof. For the proof of(20) one just has to applyLX to the equations that determiner

and to use the commutation relations of the involved mappings. From these equations it is
straightforward to find the recursion formula forLXr using the homotopy formula forδ.
Using statement (iii) ofLemma 3.6the argument for the uniqueness of the solution of these
equations is completely analogous to the one used to prove the uniqueness ofr and hence
we leave it to the reader. �
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After all these preparations we are in the position to formulate the main results of this
section.

Theorem 3.8. Let X be a symplectic vector field and let∗ be the Fedosov star product
corresponding to(∇, Ω, s), wheres ∈ W4 contains no part of symmetric degree1. Then,
LX is a derivation of∗ if and only ifTX = 0,LXΩ = 0 andLXs = 0, i.e. if and only if X
is affine with respect to∇ and both s andΩ are invariant with respect to X.

Proof. First letTX = 0 = LXΩ = LXs then we haveLXR = ∇TX = 0 and diXΩ = 0
and henceLXr = δ−1(∇LXr − (1/ν) ad(r)LXr). But this impliesLXr = 0 and then
obviously [D,LX] = (1/ν) ad(TX + LXr) = 0 such thatProposition 3.3implies thatLX

is a derivation of∗. To prove the converse we again useProposition 3.3which says that
in caseLX is a derivation of∗ there is a formal seriesAX of closed one-forms onM such
thatD(θX ⊗ 1 + (1/2)DθX ⊗ 1 − ia(X)r) = 1 ⊗ AX. Together withEq. (19)this yields
LXr = −(1⊗ (θX +AX + iXΩ)+TX). Applyingδ−1 to this equation and using the second
equation in(20)we get

LXs = −(θX + AX + iXΩ) ⊗ 1 − δ−1TX.

Now s and henceLXs is inW4 and has no part of symmetric degree 1 such that this equation
impliesLXs = 0, θX + AX + iXΩ = 0 andδ−1TX = 0. SinceθX andAX are closed the
second of these equations implies 0= diXΩ = LXΩ and using the homotopy formula for
δ together withδTX = 0 the last equation yieldsTX = 0 which is equivalent toX being
affine with respect to∇ according toLemmas 3.5 and 3.6. Finally one can insert the above
expression forLXr into the first equation in(20)which turns out to be satisfied identically,
which is just a check for consistency. �

In the cases = 0 a different proof of the statement of the above theorem was given in
[10] (cf. also[11, Lemma 6.1]). This proof uses the facts that every Fedosov star product
is natural in the sense of[11, Definition 2.1]and that every natural star product uniquely
determines a torsion free symplectic connection, that for a Fedosov star product coincides
with the connection used to construct it, whereas our proof remains within the framework
of Fedosov’s construction and makes no use of other additional results than those presented
in this section.

Finally we can give an additional condition forLX to be even a quasi-inner derivation of
∗ which is originally due to Gutt[10] (cf. also[11, Theorem 6.2]).

Proposition 3.9. Let X be a symplectic vector field such thatLX is a derivation of∗ then
LX is even quasi-inner if and only if there is a formal functionf ∈ C∞(M)[[ν]] such that

df = θX + iXΩ = iX(ω + Ω) (21)

and thenLX = LXf0
= −(1/ν) ad∗(f), where we have writtenf = f0 + f+ with f0 ∈

C∞(M) andf+ ∈ νC∞(M)[[ν]].

Proof. FromEq. (13)it is obvious thatLX is quasi-inner if and only if there is a formal
functionf ∈ C∞(M)[[ν]] such thatτ(f) = f + θX ⊗1+ (1/2)DθX ⊗1− ia(X)r but using
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Eq. (19)together withTX = 0,LXr = 0 andDf = 1⊗df this is equivalent to(21). In fact
the necessary condition for the solvability of this equation is fulfilled sinceiXΩ is closed
according toTheorem 3.8andθX is closed asX is symplectic. Moreover, observe that the
zeroth order inν of (21) just means thatX is Hamiltonian with Hamiltonian functionf0
and hence the second statement of the proposition is immediate. �

The proof of the fact that the existence of a formal functionf that satisfies(21)is sufficient
for LX to be quasi-inner is originally due to Kravchenko[13, Proposition 4.3].

4. g-Invariant star products ∗ and quantum momentum mappings

In this section we shall use the results ofTheorem 3.8to find necessary and sufficient
conditions for the star product∗ to be invariant with respect to a Lie algebra action. Fur-
thermoreProposition 3.9gives criteria for the existence of a quantum Hamiltonian and with
some little more effort we shall find a last condition which is necessary and sufficient for
this quantum Hamiltonian to define a quantum momentum mapping for∗.

First let us recall some definitions from[18]. Let us consider a finite dimensional real
or complex Lie algebrag and letX· : g → Γ ∞

symp(TM) : ξ �→ Xξ denote a Lie algebra
anti-homomorphism, i.e. [Xξ, Xη] = −X[ξ,η] for all ξ, η ∈ g. Then obviously3(ξ)f :=
−LXξ

f defines a Lie algebra action ofg onC∞(M) that naturally extends to a Lie algebra
action onC∞(M)[[ν]].

Definition 4.1. With the notations from above a star product) is calledg-invariant in case
3(ξ) is a derivation of) for all ξ ∈ g.

FromTheorem 3.8we obviously get the following deduction.

Deduction 4.2. The Fedosov star product∗ constructed from(∇, Ω, s), wheres ∈ W4
contains no part of symmetric degree1, is g-invariant if and only ifXξ is affine with respect
to ∇ for all ξ ∈ g, i.e. [∇,LXξ

] = 0∀ ξ ∈ g andΩ ands are invariant with respect toXξ

for all ξ ∈ g, i.e.diXξ
Ω = LXξ

Ω = 0 = LXξ
s ∀ ξ ∈ g.

Let us introduce some notation. Considering some complex vector spaceV endowed
with a representationπ : g → Hom(V, V) of the Lie algebrag in V we denote the
space ofV -valuedk-multilinear alternating forms ong by Ck(g, V) and the correspond-
ing Chevalley–Eilenberg differential shall be denoted byδπ : C•(g, V) → C•+1(g, V).
Moreover the spaces of the corresponding cocycles, coboundaries, and the corresponding
cohomology spaces shall be denoted byZk

π(g, V), Bk
π(g, V), andHk

π(g, V).
Now the Lie algebra action3 is called Hamiltonian if and only if there is an element

J0 ∈ C1(g, C∞(M)) such thatXJ0(ξ) = Xξ for all ξ ∈ g, i.e. iXξ
ω = dJ0(ξ). In this case

3(ξ)· = {J0(ξ), ·} andJ0 is said to be a Hamiltonian for the action3. (For applications in
physics where typicallyg is the real Lie algebra corresponding to a Lie group that acts on
M by symplectomorphisms and where the generating vector fieldsXξ are real-valued the
HamiltonianJ0 is assumed to be real-valued, too.) In caseJ0 is equivariant with respect to
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the coadjoint representation ofg, i.e. {J0(ξ), J0(η)} = J0([ξ, η]) for all ξ, η ∈ g one calls
J0 a classical momentum mapping.

Definition 4.3. Let ) be ag-invariant star product, thenJ = J0+J+ ∈ C1(g, C∞(M))[[ν]]
with J0 ∈ C1(g, C∞(M)) andJ+ ∈ νC1(g, C∞(M))[[ν]] is called a quantum Hamiltonian
for the action3 in case

3(ξ) = 1

ν
ad)(J(ξ)) for all ξ ∈ g. (22)

J is called a quantum momentum mapping if in addition

1

ν
(J(ξ) ) J(η) − J(η) ) J(ξ)) = J([ξ, η]) (23)

for all ξ, η ∈ g.

Observe that the zeroth order inν of (22) is equivalent toJ0 being a Hamiltonian for3
and that the zeroth order inν of (23) just means equivariance of this classical Hamiltonian
with respect to the coadjoint action ofg or equivalently thatJ0 is a classical momentum
mapping. For Fedosov star products the fact thatJ0 has to be a classical Hamiltonian for3

can also be seen directly fromProposition 3.9as we have the following deduction.

Deduction 4.4. A g-invariant Fedosov star product for(M, ω) obtained from(∇, Ω, s)

admits a quantum Hamiltonian if and only if there is an elementJ ∈ C1(g, C∞(M))[[ν]]
such that

dJ(ξ) = iXξ
(ω + Ω) ∀ ξ ∈ g, (24)

i.e. if and only if[iXξ
(ω + Ω)] = [0] ∀ ξ ∈ g. Moreover, from Eq. (24)J is determined(in

case it exists) up to elements inC1(g, C)[[ν]].

Remark 4.5. Observe that the conditionH1
dR(M) = 0 is obviously sufficient for the exis-

tence of a quantum Hamiltonian for an arbitraryg-invariant star product) since then any
C[[ν]]-linear derivation of) is quasi-inner. But forg-invariant Fedosov star products∗ the
condition for the existence of a quantum Hamiltonian is much weaker and more precise
since only the cohomology classes of very special closed one-forms have to vanish and not
the complete cohomology.

Now recall the definition of a strongly invariant star product from[1].

Definition 4.6. LetJ0 be a classical momentum mapping for the action3. Then ag-invariant
star product is called strongly invariant if and only ifJ = J0 defines a quantum Hamiltonian
for this action.

Observe that the notion of strong invariance does not depend on the chosen classical
momentum mapping since every classical momentum mapping is of the formJ0 + b with
b ∈ Z1

0(g, C) and hence every classical momentum mapping defines a quantum Hamiltonian
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for 3 in caseJ0 does. Moreover, in the case of a strongly invariant star product) every
classical momentum mappingJ0 obviously yields a quantum momentum mappingJ = J0
since(1/ν) ad)(J0(ξ))J0(η) = {J0(ξ), J0(η)} = J0([ξ, η]) for all ξ, η ∈ g. As an immediate
corollary of Deduction 4.4 we find the following statement.

Corollary 4.7. LetJ0 be a classical momentum mapping for the action3.Then ag-invariant
Fedosov star product∗ obtained from(∇, Ω, s) is strongly invariant if and only if

iXξ
Ω = 0 for all ξ ∈ g. (25)

In this case every classical momentum mapping defines a quantum momentum mapping
for ∗.

Proof. According to Deduction 4.4 a classical momentum mappingJ0 defines a quantum
Hamiltonian for∗ if and only if dJ0(ξ) = iXξ

(ω +Ω) for all ξ ∈ g but since dJ0(ξ) = iXξ
ω

this is equivalent toEq. (25). �

Returning to the general case our next aim is to give a further condition involvingω, Ω

andX· which in addition guarantees that a quantum HamiltonianJ is in fact a quantum
momentum mapping.

Proposition 4.8. Let J be a quantum Hamiltonian for the Fedosov star product∗ then
λ ∈ C2(g, C∞(M))[[ν]] defined by

λ(ξ, η) := 1

ν
(J(ξ) ∗ J(η) − J(η) ∗ J(ξ)) − J([ξ, η]) (26)

lies inC2(g, C)[[ν]] and is an element ofZ2
0(g, C)[[ν]] which is explicitly given by

λ(ξ, η) = (ω + Ω)(Xξ, Xη) − J([ξ, η]) (27)

and the cohomology class[λ] ∈ H2
0(g, C)[[ν]] does not depend on the choice of J. Moreover

quantum momentum mappings exist if and only if[λ] = [0] ∈ H2
0(g, C)[[ν]] and for every

a ∈ C1(g, C)[[ν]] such thatδ0a = λ the elementJa := J − a ∈ C1(g, C∞(M))[[ν]] is a
quantum momentum mapping for∗. Finally, the quantum momentum mapping(if it exists)
is unique up to elements inZ1

0(g, C)[[ν]], and hence we have uniqueness if and only if
H1

0(g, C) = 0.

Proof. In fact all the statements of the proposition except for the explicit shape ofλ hold for
anyg-invariant star product) according to[18, Proposition 6.3]and are straightforward to
prove. It thus remains to prove(27)but this follows from the following computation using
Eq. (24):

λ(ξ, η) + J([ξ, η]) = 1

ν
ad∗(J(ξ))J(η) = −LXξ

J(η) = −iXξ
dJ(η)

= −iXξ
iXη(ω + Ω) = (ω + Ω)(Xξ, Xη). �

Again, for Fedosov star products the second condition for the existence of a quantum
momentum mapping can be formulated more precisely than in the general case since the
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cocycleλ whose cohomology class has to vanish to get a quantum momentum mapping can
be expressed explicitly in terms ofω, Ω andX·. Obviously, supposing the existence of a
classical Hamiltonian for3 the zeroth order of this condition is equivalent to the existence
of a classical momentum mapping.

Let us consider the important example of a semi-simple Lie algebrag in more detail.

Example 4.9. In caseg is semi-simple it is well known that one has the following properties:
[g, g] = g(⇒ H1

0(g, C) = 0) andH2
0(g, C) = 0. But then [g, g] = g implies writingξ =∑

k∈I [ζ(k), η(k)] (the sum ranges over a finite index setI) with ζ(k), η(k) ∈ g and using the
invariance ofω + Ω with respect toXζ(k) andXη(k) that

iXξ
(ω + Ω) = −

∑
k∈I

i[X
ζ(k) ,X

η(k) ](ω + Ω)

= −
∑
k∈I

LX
ζ(k)

iX
η(k)

(ω + Ω) = d

(∑
k∈I

(ω + Ω)(Xζ(k) , Xη(k) )

)

and hence for allξ ∈ g there is aJ(ξ) ∈ C∞(M)[[ν]] such that dJ(ξ) = iXξ
(ω + Ω).

Moreover, one can achieve thatJ ∈ C1(g, C∞(M))[[ν]] implying thatJ defines a quantum
Hamiltonian for∗ (e.g. fix a basis{ei}1≤i≤dim(g) of g, write ei = ∑

k∈Ii
[ζ(k)

i , η
(k)
i ], define

J(ei) := ∑
k∈Ii

(ω + Ω)(X
ζ

(k)
i

, X
η

(k)
i

) such that dJ(ei) = iXei
(ω + Ω) holds according to

the above computation and extendJ to g by linearity yieldingJ ∈ C1(g, C∞(M))[[ν]]
with dJ(ξ) = iXξ

(ω + Ω) ∀ ξ ∈ g). This observation together with the statements of
Proposition 4.8andH1

0(g, C) = H2
0(g, C) = 0 implies that in this case there is a unique

quantum momentum mapping for everyg-invariant Fedosov star product.

Returning to the case of an arbitrary Lie algebrag we also have the following corollary.

Corollary 4.10. Let ∗ be ag-invariant Fedosov star product and assume that there is a
classical momentum mappingJ0 for the action3, then a quantum momentum mapping J
exists if and only if there is an elementJ+ ∈ νC1(g, C∞(M))[[ν]] such that

iXξ
Ω = dJ+(ξ) and Ω(Xξ, Xη) = (δ3J+)(ξ, η) ∀ ξ, η ∈ g, (28)

and these equations determineJ+ up to elements ofνZ1
0(g, C)[[ν]].

Proof. Assuming the existence of a classical momentum mapping it is obvious that(24)
and the equationλ(ξ, η) = 0 for all ξ, η ∈ g reduce toiXξ

Ω = dJ+(ξ) andJ+([ξ, η]) =
Ω(Xξ, Xη) and it is straightforward to see that these two equations are equivalent to(28).
The statement about the ambiguity ofJ+ is obvious fromProposition 4.8. �

Observe that the condition for the existence of a quantum momentum mapping for
g-invariant Fedosov star products given in the above corollary does not depend on the
chosen classical momentum mapping but only onΩ andX·. Moreover, our result shows
that the answer to the question whether existence of a classical momentum mapping implies
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the existence of a quantum momentum mapping posed in[18] in general is no if one allows
for star products whose characteristic class is different from(1/ν)[ω] since the conditions
above involve the two-formΩ that determines this class (cf.[15]) and that has to be differ-
ent from zero in this case. One can even construct very simple examples whereΩ is even
exact and hence the characteristic class is equal to(1/ν)[ω] but nevertheless there exists no
quantum momentum mapping.
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